Failure mechanism for metal cylinder under explosive loading

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 194
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorNoh, Donghwanko
dc.contributor.authorSeo, Songwonko
dc.contributor.authorLee, Jaekunko
dc.contributor.authorJang, Minkiko
dc.contributor.authorYoon, Jeong Whanko
dc.date.accessioned2022-09-16T01:00:25Z-
dc.date.available2022-09-16T01:00:25Z-
dc.date.created2022-09-14-
dc.date.created2022-09-14-
dc.date.issued2022-09-
dc.identifier.citationJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, v.36, no.9, pp.4463 - 4474-
dc.identifier.issn1738-494X-
dc.identifier.urihttp://hdl.handle.net/10203/298564-
dc.description.abstractThis paper presents the numerical study of dynamic fracture for metal cylinder under internal explosive loading. Also, the effects of fracture models and groove designs on fracture behavior are investigated. For the dynamic hardening behavior, the Lim-Huh model including the thermal softening effect is adopted [1, 2]. Also, the Lou-Huh fracture model considering the strain rate dependency is used for fracture prediction [3]. The tensile fracture occurs first at the outer surface, and the shear fracture is observed near the inner surface. In addition, finite element analyses are performed to study the effect of various groove designs on dynamic fracture; single U-groove and V-groove at the outer surface. The tensile and shear fracture lines are predicted near the groove tip and inner surface, respectively. It is concluded that the stress triaxiality parameter is one of the critical factors in the dynamic fracture prediction of the metal cylinder.-
dc.languageEnglish-
dc.publisherKOREAN SOC MECHANICAL ENGINEERS-
dc.titleFailure mechanism for metal cylinder under explosive loading-
dc.typeArticle-
dc.identifier.wosid000849170000017-
dc.identifier.scopusid2-s2.0-85137449834-
dc.type.rimsART-
dc.citation.volume36-
dc.citation.issue9-
dc.citation.beginningpage4463-
dc.citation.endingpage4474-
dc.citation.publicationnameJOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY-
dc.identifier.doi10.1007/s12206-022-0811-5-
dc.identifier.kciidART002874210-
dc.contributor.localauthorYoon, Jeong Whan-
dc.contributor.nonIdAuthorSeo, Songwon-
dc.contributor.nonIdAuthorLee, Jaekun-
dc.contributor.nonIdAuthorJang, Minki-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDynamic fracture model-
dc.subject.keywordAuthorDynamic hardening model-
dc.subject.keywordAuthorExplosive loading-
dc.subject.keywordAuthorGroove design-
dc.subject.keywordAuthorHigh strain rate-
dc.subject.keywordPlusHIGH STRAIN RATES-
dc.subject.keywordPlusDUCTILE FRACTURE-
dc.subject.keywordPlusSTRESS TRIAXIALITY-
dc.subject.keywordPlusDYNAMIC FRACTURE-
dc.subject.keywordPlusBEHAVIORS-
dc.subject.keywordPlusALLOY-
dc.subject.keywordPlusFRAGMENTATION-
dc.subject.keywordPlusCRITERION-
dc.subject.keywordPlusRANGE-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0