Broadband second-harmonic phase-matching in dispersion engineered slot waveguides

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 87
  • Download : 0
Parametric optical nonlinearities are usually weak and require both high optical field intensity and phase-matching. Micro/nanophotonics, with strong confinement of light in waveguides of nanometer-scale cross-sections, can provide high field intensity, but is still in need of a solution for phase-matching across a broad bandwidth. In this article, we show that mode-coupling in slot waveguides can engineer the waveguide modal dispersion, and with proper choice of materials, can achieve on-chip broadband second-harmonic phase-matching. A phase-matching bandwidth in the range of 220 nm at mid-infrared can occur for a hetero-slot waveguide consisting of aluminum nitride (AlN) and silicon nitride (SiN). With a high-nonlinearity polymer as cladding material, about 1.76 W(-1)cm(-2) of normalized conversion efficiency in second-harmonic-generation (SHG) and about 23 dB signal gain in degenerate optical parametric amplification (DOPA) can be achieved over a broad bandwidth. An asymmetric-slot waveguide configuration and a thermal tuning scheme are proposed to reduce the fabrication difficulty. This concept of broadband second-harmonic phase-matching can be extended to other nonlinear optical frequency mixing processes, thus expanding the scope of on-chip nonlinear optical applications. (C) 2016 Optical Society of America
Publisher
OPTICAL SOC AMER
Issue Date
2016-01
Language
English
Article Type
Article
Citation

OPTICS EXPRESS, v.24, no.2, pp.773 - 786

ISSN
1094-4087
DOI
10.1364/OE.24.000773
URI
http://hdl.handle.net/10203/298523
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0