Self-Cooling Gallium-Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use

Cited 21 time in webofscience Cited 0 time in scopus
  • Hit : 371
  • Download : 0
Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored. Here, a gallium-based TES integrated is presented with a flexible and stretchable radiative cooler, which offers zero-power thermal management for reliable rigid mode operation in the hot outdoors. The radiative cooler can both effectively reflect the heat transfer from the sun and emit thermal energy. It, therefore, allows a TES-in-the-air to maintain its temperature below the melting point of gallium (29.8 celcius) under hot weather with strong sun exposure, thus preventing unwanted softening of the device. Comprehensive studies on optical, thermal, and mechanical characteristics of radiative-cooler-integrated TES, along with a proof-of-concept demonstration in the hot outdoors verify the reliability of this design approach, suggesting the possibility of expanding the use of TES in various environments.
Publisher
WILEY
Issue Date
2022-08
Language
English
Article Type
Article
Citation

ADVANCED SCIENCE, v.9, no.24

ISSN
2198-3844
DOI
10.1002/advs.202202549
URI
http://hdl.handle.net/10203/298231
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0