MGGAN: Solving Mode Collapse Using Manifold-Guided Training

Cited 30 time in webofscience Cited 0 time in scopus
  • Hit : 98
  • Download : 0
Mode collapse is a critical problem in training generative adversarial networks. To alleviate mode collapse, several recent studies have introduced new objective functions, network architectures, or alternative training schemes. However, their achievement is often the result of sacrificing the image quality. In this paper, we propose a new algorithm, namely, the manifold-guided generative adversarial network (MGGAN), which leverages a guidance network on existing GAN architecture to induce the generator to learn the overall modes of a data distribution. The guidance network transforms an image into a learned manifold space, which is effective in representing the coverage of the overall modes. The characteristics of this guidance network helps penalize mode imbalance. Results of the experimental comparisons using various baseline GANs showed that MGGAN can be easily extended to existing GANs and resolve mode collapse without losing the image quality. Moreover, we extend the idea of manifold-guided GAN training to increase the original diversity of a data distribution. From the experiment, we confirmed that a GAN model guided by a joint manifold can sample data distribution with greater diversity. Results of the experimental analysis confirmed that MGGAN is an effective and efficient tool for improving the diversity of GANs.
Publisher
Institute of Electrical and Electronics Engineers Inc.
Issue Date
2021-10
Language
English
Citation

18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021, pp.2347 - 2356

ISSN
2473-9936
DOI
10.1109/ICCVW54120.2021.00266
URI
http://hdl.handle.net/10203/298045
Appears in Collection
AI-Conference Papers(학술대회논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 30 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0