A Novel Split-Gate Ferroelectric FET for a Compact and Energy Efficient Neuron

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 172
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Gyusoupko
dc.contributor.authorKim, Hyung Jinko
dc.contributor.authorShin, Eui Joongko
dc.contributor.authorKim, Seonghoko
dc.contributor.authorLee, Tae Inko
dc.contributor.authorCho, Byung Jinko
dc.date.accessioned2022-08-18T08:00:39Z-
dc.date.available2022-08-18T08:00:39Z-
dc.date.created2022-07-03-
dc.date.created2022-07-03-
dc.date.created2022-07-03-
dc.date.created2022-07-03-
dc.date.issued2022-08-
dc.identifier.citationIEEE ELECTRON DEVICE LETTERS, v.43, no.8, pp.1375 - 1378-
dc.identifier.issn0741-3106-
dc.identifier.urihttp://hdl.handle.net/10203/298015-
dc.description.abstractNeuromorphic computing—brain-inspired computing—is considered a next-generation computing architecture that can overcome problems caused by the high computing cost of modern data science. Ferroelectric FETs (FeFETs) are one of the promising candidates for hardware implementation of bio-inspired neurons. However, the conventional FeFET-based neurons require a considerable number of device components for the realization of inhibitory operation, or they need negative supply voltage, leading to high routing costs. In this letter, a novel device, named a Split-Gate (SG) FeFET, is proposed for a bio-inspired neuron. Harnessing the capacitance difference between two gates, both excitatory and inhibitory operations can be simply implemented on a single device. Furthermore, adding a “current stopper” to the SG FeFET enables energy-efficient operation of the neuron by eliminating the remanent current of the FeFET, which has been a significant drawback of conventional FeFET-based leaky integration-and-firing (LIF) emulation.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA Novel Split-Gate Ferroelectric FET for a Compact and Energy Efficient Neuron-
dc.typeArticle-
dc.identifier.wosid000831160000059-
dc.identifier.scopusid2-s2.0-85133734111-
dc.type.rimsART-
dc.citation.volume43-
dc.citation.issue8-
dc.citation.beginningpage1375-
dc.citation.endingpage1378-
dc.citation.publicationnameIEEE ELECTRON DEVICE LETTERS-
dc.identifier.doi10.1109/LED.2022.3187624-
dc.contributor.localauthorCho, Byung Jin-
dc.contributor.nonIdAuthorKim, Hyung Jin-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorNeurons-
dc.subject.keywordAuthorFeFETs-
dc.subject.keywordAuthorLogic gates-
dc.subject.keywordAuthorIron-
dc.subject.keywordAuthorEnergy efficiency-
dc.subject.keywordAuthorCapacitance-
dc.subject.keywordAuthorSplit gate flash memory cells-
dc.subject.keywordAuthorBio-inspired neuron-
dc.subject.keywordAuthorleaky integration-and-firing (LIF) neuron-
dc.subject.keywordAuthorFeFETferroelectric devices-
dc.subject.keywordAuthorneuromorphic computing-
dc.subject.keywordPlusNETWORK-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0