Atomic and Electronic Manipulation of Robust Ferroelectric Polymorphs

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 356
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorEshete, Yonas Assefako
dc.contributor.authorKang, Kyungrokko
dc.contributor.authorKang, Seunghunko
dc.contributor.authorKim, Yejinko
dc.contributor.authorNguyen, Phuong Lienko
dc.contributor.authorCho, Deok-Yongko
dc.contributor.authorKim, Yunseokko
dc.contributor.authorLee, Jaekwangko
dc.contributor.authorCho, Suyeonko
dc.contributor.authorYang, Heejunko
dc.date.accessioned2022-08-12T01:00:39Z-
dc.date.available2022-08-12T01:00:39Z-
dc.date.created2022-07-11-
dc.date.created2022-07-11-
dc.date.issued2022-08-
dc.identifier.citationADVANCED MATERIALS, v.34, no.31-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10203/297912-
dc.description.abstractPolymorphism allows the symmetry of the lattice and spatial charge distributions of atomically thin materials to be designed. While various polymorphs for superconducting, magnetic, and topological states have been extensively studied, polymorphic control is a challenge for robust ferroelectricity in atomically thin geometries. Here, the atomic and electric manipulation of ferroelectric polymorphs in Mo1-xWxTe2 is reported. Atomic manipulation for polymorphic control via chemical pressure (substituting tungsten for molybdenum atoms) and charge density modulation can realize tunable polar lattice structures and robust ferroelectricity up to T = 400 K with a constant coercive field in an atomically thin material. Owing to the effective inversion symmetry breaking, the ferroelectric switching withstands a charge carrier density of up to 1.1 x 10(13) cm(-2), developing an original diagram for ferroelectric switching in atomically thin materials.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleAtomic and Electronic Manipulation of Robust Ferroelectric Polymorphs-
dc.typeArticle-
dc.identifier.wosid000818924700001-
dc.identifier.scopusid2-s2.0-85133039557-
dc.type.rimsART-
dc.citation.volume34-
dc.citation.issue31-
dc.citation.publicationnameADVANCED MATERIALS-
dc.identifier.doi10.1002/adma.202202633-
dc.contributor.localauthorYang, Heejun-
dc.contributor.nonIdAuthorEshete, Yonas Assefa-
dc.contributor.nonIdAuthorKang, Kyungrok-
dc.contributor.nonIdAuthorKang, Seunghun-
dc.contributor.nonIdAuthorKim, Yejin-
dc.contributor.nonIdAuthorNguyen, Phuong Lien-
dc.contributor.nonIdAuthorCho, Deok-Yong-
dc.contributor.nonIdAuthorKim, Yunseok-
dc.contributor.nonIdAuthorLee, Jaekwang-
dc.contributor.nonIdAuthorCho, Suyeon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor2D ferroelectricity-
dc.subject.keywordAuthorphase diagrams-
dc.subject.keywordAuthorphase transitions-
dc.subject.keywordAuthorpolymorphism-
dc.subject.keywordAuthorscreening-
dc.subject.keywordPlusPOLARIZATION-
dc.subject.keywordPlusTEMPERATURE-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0