eIF4A3 Phosphorylation by CDKs Affects NMD during the Cell Cycle

Cited 31 time in webofscience Cited 0 time in scopus
  • Hit : 75
  • Download : 0
Exon junction complexes (EJCs) loaded onto spliced mRNAs during splicing serve as molecular markers for various post-transcriptional gene-regulatory processes, including nonsense-mediated mRNA decay (NMD). Although the composition and structure of EJCs are well characterized, the mechanism regulating EJC deposition remains unknown. Here we find that threonine 163 (T163) within the RNA-binding motif of eIF4A3 (a core EJC component) is phosphorylated by cyclin-dependent protein kinases 1 and 2 in a cell cycle-dependentmanner. T163 phosphorylation hinders binding of eIF4A3 to spliced mRNAs and other EJC components. Instead, it promotes association of eIF4A3 with CWC22, which guides eIF4A3 to an active spliceosome. These molecular events ensure the fidelity of specific deposition of the EJC similar to 20-24 nt up-stream of an exon-exon junction. Accordingly, NMD is affected by T163 phosphorylation. Collectively, our data provide evidence that T163 phosphorylation affects EJC formation and, consequently, NMD efficiency in a cell cycle-dependent manner.
Publisher
CELL PRESS
Issue Date
2019-02
Language
English
Article Type
Article
Citation

CELL REPORTS, v.26, no.8, pp.2126 - +

ISSN
2211-1247
DOI
10.1016/j.celrep.2019.01.101
URI
http://hdl.handle.net/10203/297765
Appears in Collection
BS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0