High-Performance Solution-Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery

Cited 32 time in webofscience Cited 0 time in scopus
  • Hit : 217
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorRongione, Nicolas Augustusko
dc.contributor.authorLi, Manko
dc.contributor.authorWu, Huanko
dc.contributor.authorHuu Duy Nguyenko
dc.contributor.authorKang, Joon Sangko
dc.contributor.authorOuyang, Boyako
dc.contributor.authorXia, Hongyanko
dc.contributor.authorHu, Yongjieko
dc.date.accessioned2022-08-02T09:00:57Z-
dc.date.available2022-08-02T09:00:57Z-
dc.date.created2022-08-02-
dc.date.issued2019-03-
dc.identifier.citationADVANCED ELECTRONIC MATERIALS, v.5, no.3-
dc.identifier.issn2199-160X-
dc.identifier.urihttp://hdl.handle.net/10203/297693-
dc.description.abstractLower grade waste heat recovery near room temperature is limited due to multiple technology challenges including low efficiency, high cost, and scalability. Here, a low-cost and scalable solution process is reported to fabricate a nanostructured SnSe thin film, and a high thermoelectric performance near room temperature is demonstrated. This transport study reveals strong phonon scattering near the interfaces between SnSe nanosheets that introduces a large thermal boundary resistance and an ultralow thermal conductivity of 0.09 W m(-1) K-1. Moreover, it is demonstrated that the SnSe thin film can be readily implemented on flexible plastic substrates and preserve the high thermoelectric performance over 1000 bending cycles. Together, this study demonstrates a low-cost and scalable approach to achieve high-performance flexible thin film energy harvesting devices to power electronics and sensors near room temperature.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleHigh-Performance Solution-Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery-
dc.typeArticle-
dc.identifier.wosid000461544600019-
dc.identifier.scopusid2-s2.0-85061088600-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue3-
dc.citation.publicationnameADVANCED ELECTRONIC MATERIALS-
dc.identifier.doi10.1002/aelm.201800774-
dc.contributor.localauthorKang, Joon Sang-
dc.contributor.nonIdAuthorRongione, Nicolas Augustus-
dc.contributor.nonIdAuthorLi, Man-
dc.contributor.nonIdAuthorWu, Huan-
dc.contributor.nonIdAuthorHuu Duy Nguyen-
dc.contributor.nonIdAuthorOuyang, Boya-
dc.contributor.nonIdAuthorXia, Hongyan-
dc.contributor.nonIdAuthorHu, Yongjie-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor2D van der Waals materials-
dc.subject.keywordAuthorenergy efficiency-
dc.subject.keywordAuthorflexible electronics-
dc.subject.keywordAuthornanostructures-
dc.subject.keywordAuthorphonons-
dc.subject.keywordAuthorsolution-processing-
dc.subject.keywordAuthorthermal energy harvesting-
dc.subject.keywordAuthorthermoelectrics-
dc.subject.keywordPlusTHERMAL-CONDUCTIVITY-
dc.subject.keywordPlusTHERMOELECTRIC-MATERIALS-
dc.subject.keywordPlusFIGURE-
dc.subject.keywordPlusMERIT-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 32 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0