Investigation on the impact resistance of 3D printed nacre-like composites

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 155
  • Download : 0
Patterned by the unique hierarchical architecture, nacre has exceptional impact resistance compared with the constituent materials. Hence, significant efforts have been devoted to developing new material systems with enhanced mechanical characteristics by duplicating such biological creatures. Although the key failure mechanisms inherent in nacre have been elucidated by numerous studies, guidelines for constituting optimized nacreous composites to yield the maximized mechanical performance have not been explored fully thus far. In this study, we suggest an optimal design of the nacre-like geometry through an integrated usage of parametric study, 3D printing, mechanical testing, and numerical analysis. The main design parameters of the nacre-like structure are derived by parametric study, and designed specimens are fabricated with the aid of 3D printing technology. Thereafter, the influence of the design parameters on the impact resistance is analyzed thoroughly with the drop-weight impact test. Additionally, an accurate numerical method is required to reduce the design period while satisfying the target performance of the structures. Therefore, the experiments are simulated by the finite element method, and the modeling techniques for the nacre-like composites are validated. This study can foster a feasible application of biomimetic composites in various industrial fields.
Publisher
ELSEVIER SCI LTD
Issue Date
2022-08
Language
English
Article Type
Article
Citation

THIN-WALLED STRUCTURES, v.177

ISSN
0263-8231
DOI
10.1016/j.tws.2022.109392
URI
http://hdl.handle.net/10203/297387
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0