Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing

Cited 101 time in webofscience Cited 0 time in scopus
  • Hit : 466
  • Download : 0
Designing energy efficient, uniform and reliable memristive devices for neuromorphic computing remains a challenge. By leveraging the self-rectifying behavior of gradual oxygen concentration of titanium dioxide, Choi et al. develop a transistor-free 1R cross-bar array with good uniformity and high yield. Neuromorphic computing, a computing paradigm inspired by the human brain, enables energy-efficient and fast artificial neural networks. To process information, neuromorphic computing directly mimics the operation of biological neurons in a human brain. To effectively imitate biological neurons with electrical devices, memristor-based artificial neurons attract attention because of their simple structure, energy efficiency, and excellent scalability. However, memristor's non-reliability issues have been one of the main obstacles for the development of memristor-based artificial neurons and neuromorphic computings. Here, we show a memristor 1R cross-bar array without transistor devices for individual memristor access with low variation, 100% yield, large dynamic range, and fast speed for artificial neuron and neuromorphic computing. Based on the developed memristor, we experimentally demonstrate a memristor-based neuron with leaky-integrate and fire property with excellent reliability. Furthermore, we develop a neuro-memristive computing system based on the short-term memory effect of the developed memristor for efficient processing of sequential data. Our neuro-memristive computing system successfully trains and generates bio-medical sequential data (antimicrobial peptides) while using a small number of training parameters. Our results open up the possibility of memristor-based artificial neurons and neuromorphic computing systems, which are essential for energy-efficient edge computing devices.
Publisher
NATURE PORTFOLIO
Issue Date
2022-06
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.13, no.1

ISSN
2041-1723
DOI
10.1038/s41467-022-30539-6
URI
http://hdl.handle.net/10203/297014
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 101 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0