Deep-Learning for Breaking the Trapping Sets in Low-Density Parity-Check Codes

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 180
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHan, Seokjuko
dc.contributor.authorOh, Jieunko
dc.contributor.authorOh, Kyungmokko
dc.contributor.authorHa, Jeongseokko
dc.date.accessioned2022-06-06T03:01:07Z-
dc.date.available2022-06-06T03:01:07Z-
dc.date.created2022-06-06-
dc.date.created2022-06-06-
dc.date.created2022-06-06-
dc.date.issued2022-05-
dc.identifier.citationIEEE TRANSACTIONS ON COMMUNICATIONS, v.70, no.5, pp.2909 - 2923-
dc.identifier.issn0090-6778-
dc.identifier.urihttp://hdl.handle.net/10203/296809-
dc.description.abstractIn the low-error rate regime, message-passing (MP) decoding for low-density parity-check (LDPC) codes is known to have performance degradation due to trapping sets (TSs), which often limits the use of LDPC codes for applications with low target error rates like storage devices. This work proposes a novel deep-learning based decoding algorithm which is tailored for breaking TSs. In particular, when MP decoding fails due to TSs, there exist pairs of unsatisfied check nodes (CNs) which are connected through paths only with error variable nodes (VNs), i.e., VNs with erroneous hard-decision results. The proposed algorithm efficiently identifies the paths with error VNs between unsatisfied CNs with the aid of deep-learning techniques. Then, the decoding failures are resolved by repeating the MP decoding after re-initializing the channel outputs for the error VNs in the identified paths. In addition, by analyzing the behaviors of the deep-learning based algorithm, we propose a low-complexity algorithm, called adaptive-error-path (AEP) detector. Simulation results show that the proposed algorithms efficiently break the TSs and significantly improve the error-floor performance in the low error-rate regime.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDeep-Learning for Breaking the Trapping Sets in Low-Density Parity-Check Codes-
dc.typeArticle-
dc.identifier.wosid000797439600006-
dc.identifier.scopusid2-s2.0-85126271945-
dc.type.rimsART-
dc.citation.volume70-
dc.citation.issue5-
dc.citation.beginningpage2909-
dc.citation.endingpage2923-
dc.citation.publicationnameIEEE TRANSACTIONS ON COMMUNICATIONS-
dc.identifier.doi10.1109/TCOMM.2022.3157314-
dc.contributor.localauthorHa, Jeongseok-
dc.contributor.nonIdAuthorOh, Jieun-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDecoding-
dc.subject.keywordAuthorCodes-
dc.subject.keywordAuthorDetectors-
dc.subject.keywordAuthorComplexity theory-
dc.subject.keywordAuthorIterative decoding-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorBipartite graph-
dc.subject.keywordAuthorLow-density parity-check (LDPC) codes-
dc.subject.keywordAuthorerror-floor-
dc.subject.keywordAuthortrapping set-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordPlusQC-LDPC CODES-
dc.subject.keywordPlusABSORBING SETS-
dc.subject.keywordPlusERROR-FLOOR-
dc.subject.keywordPlusCONSTRUCTION-
dc.subject.keywordPlusALGORITHM-
dc.subject.keywordPlusDECODERS-
dc.subject.keywordPlusHARDNESS-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0