Assessing Individual VR Sickness through Deep Feature Fusion of VR Video and Physiological Response

Cited 13 time in webofscience Cited 0 time in scopus
  • Hit : 342
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Sangminko
dc.contributor.authorKim, Seongyeopko
dc.contributor.authorKim, Hak Guko
dc.contributor.authorRo, Yong Manko
dc.date.accessioned2022-05-12T03:00:26Z-
dc.date.available2022-05-12T03:00:26Z-
dc.date.created2021-08-06-
dc.date.created2021-08-06-
dc.date.created2021-08-06-
dc.date.created2021-08-06-
dc.date.issued2022-05-
dc.identifier.citationIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, v.32, no.5, pp.2895 - 2907-
dc.identifier.issn1051-8215-
dc.identifier.urihttp://hdl.handle.net/10203/296502-
dc.description.abstractRecently, VR sickness assessment for VR videos is highly demanded in industry and research fields to address VR viewing safety issues. Especially, it is difficult to evaluate VR sickness of individuals due to individual differences. To achieve the challenging goal, we focus on deep feature fusion of sickness-related information. In this paper, we propose a novel deep learning-based assessment framework which estimates VR sickness of individual viewers with VR videos and corresponding physiological responses. We design the content stimulus guider imitating the phenomenon that humans feel VR sickness. The content stimulus guider extracts a deep stimulus feature from a VR video to reflect VR sickness caused by VR videos. In addition, we devise the physiological response guider to encode physiological responses that are acquired while humans experience VR videos. Each physiology sickness feature extractor (EEG, ECG, and GSR) in the physiological response guider is designed to suit their physiological characteristics. Extracted physiology sickness features are then fused into a deep physiology feature that comprehensively reflects individual deviations of VR sickness. Finally, the VR sickness predictor assesses individual VR sickness effectively with the fusion of the deep stimulus feature and the deep physiology feature. To validate the proposed method extensively, we built two benchmark datasets which contain 360-degree VR videos with physiological responses (EEG, ECG, and GSR) and SSQ scores. Experimental results show that the proposed method achieves meaningful correlations with human SSQ scores. Further, we validate the effectiveness of the proposed network designs by conducting analysis on feature fusion and visualization.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleAssessing Individual VR Sickness through Deep Feature Fusion of VR Video and Physiological Response-
dc.typeArticle-
dc.identifier.wosid000790830300034-
dc.identifier.scopusid2-s2.0-85130635202-
dc.type.rimsART-
dc.citation.volume32-
dc.citation.issue5-
dc.citation.beginningpage2895-
dc.citation.endingpage2907-
dc.citation.publicationnameIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY-
dc.identifier.doi10.1109/TCSVT.2021.3103544-
dc.contributor.localauthorRo, Yong Man-
dc.contributor.nonIdAuthorKim, Hak Gu-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorPhysiology-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorElectroencephalography-
dc.subject.keywordAuthorElectrocardiography-
dc.subject.keywordAuthorVisualization-
dc.subject.keywordAuthorDetectors-
dc.subject.keywordAuthorBrain modeling-
dc.subject.keywordAuthorVR sickness assessment-
dc.subject.keywordAuthorindividual VR sickness-
dc.subject.keywordAuthorVR video-
dc.subject.keywordAuthorphysiological response-
dc.subject.keywordPlusIMAGE QUALITY ASSESSMENT-
dc.subject.keywordPlusVIRTUAL-REALITY SIMULATION-
dc.subject.keywordPlusMOTION SICKNESS-
dc.subject.keywordPlusDEPTH-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 13 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0