Trioctylphosphine Oxide (TOPO)-Assisted Facile Fabrication of Phosphorus-Incorporated Nanostructured Carbon Nitride Toward Photoelectrochemical Water Splitting with Enhanced Activity

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 128
  • Download : 0
Designing nanostructured arrays of two-dimensional surfaces and interfaces is a versatile approach to increasing their photoelectrochemical activity. Here, phosphorus (P)-incorporated nanostructured carbon nitride (h-PCN) with an enlarged surface area is fabricated by employing trioctylphosphine oxide (TOPO) as a dopant precursor for visible-light-driven photoelectrochemical water splitting to produce hydrogen. The structural, morphological, and electronic properties of the photocatalyst have been characterized through various physicochemical techniques. We show that the incorporation of P into the g-C3N4 framework enhances light absorption over broad regimes, charge separation, and migration, as well as the specific surface area, showing excellent photocurrent enhancement (5.4 folds) in the cathodic direction as compared to bulk g-C3N4. Moreover, the photocathode shows 3.3-fold enhancement in current at zero biased potential. Without using any cocatalyst, the photoelectrodes produced 27 mu mol h(-1) of H-2 and 13 mu mol h(-1) of O-2 with 95% faradic efficiency. The excellent photoelectrochemical behavior toward water-splitting reactions by the photoelectrode is attributed to the synergistic effect of P incorporation and active sites emerging from the nanostructured architecture of the material. This work demonstrates the facile fabrication of nanostructured P-incorporated g-C3N4 toward water-splitting reactions to produce hydrogen without using a cocatalyst in a simple and cost-effective way.
Publisher
AMER CHEMICAL SOC
Issue Date
2022-01
Language
English
Article Type
Article
Citation

INORGANIC CHEMISTRY, v.61, no.3, pp.1368 - 1376

ISSN
0020-1669
DOI
10.1021/acs.inorgchem.1c02863
URI
http://hdl.handle.net/10203/295894
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0