Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 265
  • Download : 0
Currently, quantum dot light-emitting diodes (QD-LEDs) are receiving extensive attention. To maximize their luminous performance, the uniformity of the QD-LEDs is crucial. Although the spontaneously self-induced solutal Marangoni flow of an evaporating binary mixture droplet has been widely investigated and used to suppress coffee-ring patterns in ink-jet printing technology, unfortunately, ring shapes are still present at the edges, and the Marangoni flow generated by the selective evaporation of volatile liquid components cannot be controlled due to its nonlinear instabilities. In this work, polygonal coffee-ring-less QD microarrays are created using two spontaneous and sequential solutal Marangoni flows. During the initial evaporation, internal circulating flows are controlled by polygonal-shaped droplets. After that, sequential interfacial flows are generated by the captured volatile vapors. A theoretical model and scaling analysis are provided to explain the working mechanisms. It is expected that the newly designed printing system can be applied to the mass production of QD-LEDs.
Publisher
WILEY
Issue Date
2022-04
Language
English
Article Type
Article
Citation

ADVANCED SCIENCE, v.9, no.11

ISSN
2198-3844
DOI
10.1002/advs.202104519
URI
http://hdl.handle.net/10203/295836
Appears in Collection
MS-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0