Model Predictive Control-Based Multirotor Three-Dimensional Motion Planning with Point Cloud Obstacle

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 223
  • Download : 0
This study proposes a collision-free motion planning framework for indoor autonomous flight of multirotor unmanned aerial vehicle (UAV) based on the convex model predictive control (MPC) approach under a three-dimensional point cloud environment. The suggested framework is divided into three steps: full reference path generation, piecewise flight corridor (PFC) creation, and MPC-based motion planning. The framework begins with reconstructing boundary surfaces that can encapsulate the given point cloud in order to generate a full reference path by applying Dijkstra and Voronoi diagram algorithms. Then PFC that represents locally convex and feasible flight corridor is generated using the current vehicle state, triangulized obstacle, and full reference path. In such a way, the entire problem breaks down into a series of discretized convex motion planning problems whose solution can be found by applying MPC iteratively until the UAV reaches its final destination. The constraints of the MPC are set up with the dynamics of the UAV, PFC, and the performance limitation of the platform. The framework is verified with simulation under a MATLAB environment. As a result, the UAV can find the control variable needed to reach the final destination with the suggested framework. Also, the computational time of the suggested framework is shorter than those of full reference path optimization methods.
Publisher
AMER INST AERONAUTICS ASTRONAUTICS
Issue Date
2022-03
Language
English
Article Type
Article
Citation

JOURNAL OF AEROSPACE INFORMATION SYSTEMS, v.19, no.3, pp.179 - 193

ISSN
2327-3097
DOI
10.2514/1.I010956
URI
http://hdl.handle.net/10203/292805
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0