Tomographic measurement of dielectric tensors at optical frequency

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 81
  • Download : 0
The dielectric tensor is a physical descriptor of fundamental light-matter interactions, characterizing anisotropic materials with principal refractive indices and optic axes. Despite its importance in scientific and industrial applications ranging from material science to soft matter physics, the direct measurement of the three-dimensional dielectric tensor has been limited by the vectorial and inhomogeneous nature of light scattering from anisotropic materials. Here, we present a dielectric tensor tomographic approach to directly measure dielectric tensors of anisotropic structures including the spatial variations of principal refractive indices and directors. The anisotropic structure is illuminated with a polarized plane wave with various angles and polarization states. Then, the scattered fields are holographically measured and converted into vectorial diffracted field components. Finally, by inversely solving a vectorial wave equation, the three-dimensional dielectric tensor is reconstructed. Using this approach, we demonstrate quantitative tomographic measurements of various nematic liquid-crystal structures and their fast three-dimensional non-equilibrium dynamics. Measuring three-dimensional dielectric tensors is desired for applications in material and soft matter physics. Here, the authors use a tomographic approach and inversely solve the vectorial wave equation to directly reconstruct dielectric tensors of anisotropic structures.
Publisher
NATURE PORTFOLIO
Issue Date
2022-03
Language
English
Article Type
Article
Citation

NATURE MATERIALS, v.21, no.3, pp.317 - 324

ISSN
1476-1122
DOI
10.1038/s41563-022-01202-8
URI
http://hdl.handle.net/10203/292756
Appears in Collection
CH-Journal Papers(저널논문)CBE-Journal Papers(저널논문)PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0