Why mussel byssal plaques are tiny yet strong in attachment

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 207
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorQureshi, Daanish Aleemko
dc.contributor.authorGoffredo, Stephenko
dc.contributor.authorKim, Yongtaeko
dc.contributor.authorHan, Yulongko
dc.contributor.authorGuo, Mingko
dc.contributor.authorRyu, Seunghwako
dc.contributor.authorQin, Zhaoko
dc.date.accessioned2022-02-22T06:43:15Z-
dc.date.available2022-02-22T06:43:15Z-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.issued2022-02-
dc.identifier.citationMATTER, v.5, no.2, pp.710 - 724-
dc.identifier.issn2590-2385-
dc.identifier.urihttp://hdl.handle.net/10203/292348-
dc.description.abstractMytilus edulis, or blue mussels, are known for producing byssal threads, allowing them to adhere to substrate in tidal zones. A byssal thread emerges from body tissue and terminates with an adhesive plaque. These byssal plaques are found to be tiny relative to the overall mussel size and do not vary much with different body sizes. In this study, we combine mechanical testing, 3D printing, and numerical modeling to investigate the effect plaque size has on adhesion strength. Our study reveals that the plaque structure governs the adhesion strength of the plaque, while plaques with a diameter three to five times that of the byssal thread yield optimized strength to resist detachment. Furthermore, bonding strength relies on the architecture of the byssal network rather than increased plaque size Such knowledge helps to understand the design principle of byssal plaques and may shed light on designing reinforcement systems to secure engineering structures.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleWhy mussel byssal plaques are tiny yet strong in attachment-
dc.typeArticle-
dc.identifier.wosid000752281900003-
dc.identifier.scopusid2-s2.0-85123759772-
dc.type.rimsART-
dc.citation.volume5-
dc.citation.issue2-
dc.citation.beginningpage710-
dc.citation.endingpage724-
dc.citation.publicationnameMATTER-
dc.identifier.doi10.1016/j.matt.2021.12.001-
dc.contributor.localauthorRyu, Seunghwa-
dc.contributor.nonIdAuthorQureshi, Daanish Aleem-
dc.contributor.nonIdAuthorGoffredo, Stephen-
dc.contributor.nonIdAuthorKim, Yongtae-
dc.contributor.nonIdAuthorHan, Yulong-
dc.contributor.nonIdAuthorGuo, Ming-
dc.contributor.nonIdAuthorQin, Zhao-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthor3D printing-
dc.subject.keywordAuthoradhesion strength-
dc.subject.keywordAuthoradhesive plaque-
dc.subject.keywordAuthorcoarse-grained model-
dc.subject.keywordAuthorfailure mechanism-
dc.subject.keywordAuthorfinite element method-
dc.subject.keywordAuthorMAP3: Understandings-
dc.subject.keywordAuthormussel byssal thread-
dc.subject.keywordAuthortensile test-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusMECHANICS-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusROBUST-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0