Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 79
  • Download : 0
During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability. (c) 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Publisher
KOREAN NUCLEAR SOC
Issue Date
2022-02
Language
English
Article Type
Article
Citation

NUCLEAR ENGINEERING AND TECHNOLOGY, v.54, no.2, pp.644 - 652

ISSN
1738-5733
DOI
10.1016/j.net.2021.08.020
URI
http://hdl.handle.net/10203/292336
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0