Effect of pre-shear stress path on nonlinear shear stiffness degradation of cohesive soils

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 94
  • Download : 0
The nonlinear degradation of soil stiffness from very small to small strain is a key consideration for reliable prediction of ground behavior and its interactions with structures under dynamic excitation and working load conditions. Despite high sensitiveness of stiffness measurement to testing conditions, the effect of the pre-shear stress path on the stiffness degradation has not been properly discussed. Here we investigate the effect of pre-shear stress path on nonlinear shear stiffness degradation of cohesive soils. Reconstituted kaolinite specimens were consolidated to be the overconsolidation ratio (OCR) = 1, 2, and 4 along K-0 and isotropic stress paths. The shear stiffness degradations of the specimens during undrained shear were measured using on-specimen linear variable differential transformers (LVDTs). Experimental results show that the pre-stress stress path has a strong influence on the degree of shear stiffness degradation at different OCRs. This influence is interpreted within the context of the rotation angle of shear stress path, which provides a good qualitative explanation of the inconsistent observations in the literature.
Publisher
American Society of Testing Materials
Issue Date
2013-03
Language
English
Article Type
Article
Citation

Geotechnical Testing Journal, v.36, no.2, pp.198 - 205

ISSN
0149-6115
DOI
10.1520/GTJ20120116
URI
http://hdl.handle.net/10203/291947
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0