Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow

Cited 142 time in webofscience Cited 0 time in scopus
  • Hit : 128
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorChoo, Jinhyunko
dc.contributor.authorSun, WaiChingko
dc.date.accessioned2022-01-21T06:41:57Z-
dc.date.available2022-01-21T06:41:57Z-
dc.date.created2022-01-21-
dc.date.created2022-01-21-
dc.date.created2022-01-21-
dc.date.created2022-01-21-
dc.date.created2022-01-21-
dc.date.issued2018-03-
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering, v.330, pp.1 - 32-
dc.identifier.issn0045-7825-
dc.identifier.urihttp://hdl.handle.net/10203/291939-
dc.description.abstractThe failure behavior of geological materials depends heavily on confining pressure and strain rate. Under a relatively low confining pressure, these materials tend to fail by brittle, localized fracture, but as the confining pressure increases, they show a growing propensity for ductile, diffuse failure accompanying plastic flow. Furthermore, the rate of deformation often exerts control on the brittleness. Here we develop a theoretical and computational modeling framework that encapsulates this variety of failure modes and their brittle-ductile transition. The framework couples a pressure-sensitive plasticity model with a phase-field approach to fracture which can simulate complex fracture propagation without tracking its geometry. We derive a phase-field formulation for fracture in elastic-plastic materials as a balance law of microforce, in a new way that honors the dissipative nature of the fracturing processes. For physically meaningful and numerically robust incorporation of plasticity into the phase-field model, we introduce several new ideas including the use of phase-field effective stress for plasticity, and the dilative/compactive split and rate-dependent storage of plastic work. We construct a particular class of the framework by employing a Drucker-Prager plasticity model with a compression cap, and demonstrate that the proposed framework can capture brittle fracture, ductile flow, and their transition due to confining pressure and strain (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherElsevier-
dc.titleCoupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow-
dc.typeArticle-
dc.identifier.wosid000425735700001-
dc.identifier.scopusid2-s2.0-85034091680-
dc.type.rimsART-
dc.citation.volume330-
dc.citation.beginningpage1-
dc.citation.endingpage32-
dc.citation.publicationnameComputer Methods in Applied Mechanics and Engineering-
dc.identifier.doi10.1016/j.cma.2017.10.009-
dc.contributor.localauthorChoo, Jinhyun-
dc.contributor.nonIdAuthorSun, WaiChing-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorGeomaterials-
dc.subject.keywordAuthorPhase field-
dc.subject.keywordAuthorPlasticity-
dc.subject.keywordAuthorFracture-
dc.subject.keywordAuthorStrain localization-
dc.subject.keywordAuthorBrittle-ductile transition-
dc.subject.keywordPlusCAM-CLAY PLASTICITY-
dc.subject.keywordPlusUNSATURATED POROUS CONTINUA-
dc.subject.keywordPlusFINITE DEFORMATION RANGE-
dc.subject.keywordPlusTRUE TRIAXIAL STRESSES-
dc.subject.keywordPlusSTRAIN LOCALIZATION-
dc.subject.keywordPlusMATHEMATICAL FRAMEWORK-
dc.subject.keywordPlusDAMAGE MODEL-
dc.subject.keywordPlusFAILURE CHARACTERISTICS-
dc.subject.keywordPlusFRICTIONAL MATERIALS-
dc.subject.keywordPlusSTRONG DISCONTINUITY-
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 142 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0