Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling

Cited 65 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
Cracking and damage from crystallization of minerals in pores center on a wide range of problems, from weathering and deterioration of structures to storage of CO2 via in situ carbonation. Here we develop a theoretical and computational framework for modeling these crystallization-induced deformation and fracture in fluid-infiltrated porous materials. Conservation laws are formulated for coupled chemo-hydro-mechanical processes in a multiphase material composed of the solid matrix, liquid solution, gas, and crystals. We then derive an expression for the effective stress tensor that is energy-conjugate to the strain rate of a porous material containing crystals growing in pores. This form of effective stress incorporates the excess pore pressure exerted by crystal growth - the crystallization pressure - which has been recognized as the direct cause of deformation and fracture during crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitutive framework for porous media subject to crystal growth. The chemo-hydro-mechanical model is then coupled with a phase-field approach to fracture which enables simulation of complex fractures without explicitly tracking their geometry. For robust and efficient solution of the initial-boundary value problem at hand, we utilize a combination of finite element and finite volume methods and devise a block-partitioned preconditioning strategy. Through numerical examples we demonstrate the capability of the proposed modeling framework for simulating complex interactions among unsaturated flow, crystallization kinetics, and cracking in the solid matrix. (C) 2018 Elsevier B.V. All rights reserved.
Publisher
Elsevier
Issue Date
2018-06
Language
English
Article Type
Article
Citation

Computer Methods in Applied Mechanics and Engineering, v.335, pp.347 - 379

ISSN
0045-7825
DOI
10.1016/j.cma.2018.01.044
URI
http://hdl.handle.net/10203/291938
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 65 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0