Chiral Optoelectronic Functionalities via the DNA-Organic Semiconductor Complex

Cited 8 time in webofscience Cited 0 time in scopus
  • Hit : 158
  • Download : 0
We fabricate the bio-organic field-effect transistor (BOFET) with the DNA-perylene diimide (PDI) complex, which shows unusual chiroptical and electrical functionalities. DNA is used as the chirality-inducing scaffold and the charge-injection layer. The shear-oriented film of the DNA-PDI complex shows how the large-area periodic molecular orientation and the charge transport are related, generating drastically different optoelectronic properties at each DNA/PDI concentration. The resultant BOFET reveals chiral structures with a high charge carrier mobility, photoresponsivity, and photosensitivity, reaching 3.97 cm2 V-1 s(-1), 1.18 A W-1, and 7.76 x 10(3), respectively. Interestingly, the BOFET enables the definitive response under the handedness of circularly polarized light with a high dissymmetry factor of approximately +0.14. This work highlights the natural chirality and anisotropy of DNA material and the electron conductivity of organic semiconducting molecules to be mutually used in significant chiro-optoelectronic functions as an added ability to the traditional OFET.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-12
Language
English
Article Type
Article
Citation

ACS NANO, v.15, no.12, pp.20353 - 20363

ISSN
1936-0851
DOI
10.1021/acsnano.1c08641
URI
http://hdl.handle.net/10203/291794
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 8 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0