A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 658
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorLee, Subinko
dc.contributor.authorGhaffarian, Hadiko
dc.contributor.authorKim, Wonsikko
dc.contributor.authorLee, Taeguko
dc.contributor.authorHan, Seung Minko
dc.contributor.authorRyu, Seunghwako
dc.contributor.authorOh, Sang Hoko
dc.date.accessioned2022-01-10T06:40:13Z-
dc.date.available2022-01-10T06:40:13Z-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.created2022-01-05-
dc.date.issued2022-01-
dc.identifier.citationNANO LETTERS, v.22, no.1, pp.188 - 195-
dc.identifier.issn1530-6984-
dc.identifier.urihttp://hdl.handle.net/10203/291697-
dc.description.abstractWe investigated the role of graphene interfaces in strengthening and toughening of the Cu-graphene nanocomposite by a combination of in situ transmission electron microscopy (TEM) deformation and molecular dynamics (MD) simulations. In situ TEM directly showed that dislocation plasticity is strongly confined within single Cu grains by the graphene interfaces and grain boundaries. The weak Cu-graphene interfacial bonding induces stress decoupling, which results in independent plastic deformation of each Cu layer. As confirmed by the MD simulation, the localized deformation made by such constrained dislocation plasticity results in the nucleation and growth of voids at the graphene interface, which acts as a precursor for crack. The graphene interfaces also effectively block crack propagation promoted by easy delamination of Cu layers dissipating the elastic strain energy. The toughening mechanisms revealed by the present study will provide valuable insights into the optimization of the mechanical properties of metal–graphene nanolayered composites.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleA Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite-
dc.typeArticle-
dc.identifier.wosid000736818000001-
dc.identifier.scopusid2-s2.0-85122356158-
dc.type.rimsART-
dc.citation.volume22-
dc.citation.issue1-
dc.citation.beginningpage188-
dc.citation.endingpage195-
dc.citation.publicationnameNANO LETTERS-
dc.identifier.doi10.1021/acs.nanolett.1c03599-
dc.contributor.localauthorHan, Seung Min-
dc.contributor.localauthorRyu, Seunghwa-
dc.contributor.nonIdAuthorLee, Subin-
dc.contributor.nonIdAuthorGhaffarian, Hadi-
dc.contributor.nonIdAuthorOh, Sang Ho-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorgraphenenanocompositetoughening mechanismsin situ TEMMD simulation-
dc.subject.keywordPlusULTRA-HIGH STRENGTHDAMAGE-
Appears in Collection
MS-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0