Label-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 167
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorBoonruangkan, Jeerananko
dc.contributor.authorFarrokhi, Hamidko
dc.contributor.authorRohith, Thazhe M.ko
dc.contributor.authorKwok, Samuelko
dc.contributor.authorCarney, Tom J.ko
dc.contributor.authorSu, Pei-Chenko
dc.contributor.authorKim, Young-Jinko
dc.date.accessioned2021-12-14T06:42:37Z-
dc.date.available2021-12-14T06:42:37Z-
dc.date.created2021-12-14-
dc.date.created2021-12-14-
dc.date.created2021-12-14-
dc.date.issued2021-11-
dc.identifier.citationJOURNAL OF BIOMEDICAL OPTICS, v.26, no.11-
dc.identifier.issn1083-3668-
dc.identifier.urihttp://hdl.handle.net/10203/290537-
dc.description.abstractSignificance: Real-time monitoring of the heart rate and blood flow is crucial for studying cardiovascular dysfunction, which leads to cardiovascular diseases. Aim: This study aims at in-depth understanding of high-speed cardiovascular dynamics in a zebrafish embryo model for various biomedical applications via frequency-comb-referenced quantitative phase imaging (FCR-QPI). Approach: Quantitative phase imaging (QPI) has emerged as a powerful technique in the field of biomedicine but has not been actively applied to the monitoring of circulatory/cardiovascular parameters, due to dynamic speckles and low frame rates. We demonstrate FCR-QPI to measure heart rate and blood flow in a zebrafish embryo. FCR-QPI utilizes a high-speed photodetector instead of a conventional camera, so it enables real-time monitoring of individual red blood cell (RBC) flow. Results: The average velocity of zebrafish' s RBCs was measured from 192.5 to 608.8 mu m/s at 24 to 28 hour-post-fertilization (hpf). In addition, the number of RBCs in a pulsatile blood flow was revealed to 16 cells/pulse at 48 hpf. The heart rates corresponded to 94 and 142 beats-per-minute at 24 and 48 hpf. Conclusions: This approach will newly enable in-depth understanding of the cardiovascular dynamics in the zebrafish model and possible usage for drug discovery applications in biomedicine. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.-
dc.languageEnglish-
dc.publisherSPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS-
dc.titleLabel-free quantitative measurement of cardiovascular dynamics in a zebrafish embryo using frequency-comb-referenced-quantitative phase imaging-
dc.typeArticle-
dc.identifier.wosid000727200100004-
dc.identifier.scopusid2-s2.0-85120864091-
dc.type.rimsART-
dc.citation.volume26-
dc.citation.issue11-
dc.citation.publicationnameJOURNAL OF BIOMEDICAL OPTICS-
dc.identifier.doi10.1117/1.JBO.26.11.116004-
dc.contributor.localauthorKim, Young-Jin-
dc.contributor.nonIdAuthorBoonruangkan, Jeeranan-
dc.contributor.nonIdAuthorFarrokhi, Hamid-
dc.contributor.nonIdAuthorRohith, Thazhe M.-
dc.contributor.nonIdAuthorKwok, Samuel-
dc.contributor.nonIdAuthorCarney, Tom J.-
dc.contributor.nonIdAuthorSu, Pei-Chen-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorquantitative phase imaging-
dc.subject.keywordAuthorfrequency comb-
dc.subject.keywordAuthorcardiovascular dynamics-
dc.subject.keywordAuthorzebrafish-
dc.subject.keywordAuthorhigh-speed phase measurement-
dc.subject.keywordPlusBLOOD-FLOW-
dc.subject.keywordPlusABNORMALITIES-
dc.subject.keywordPlusDYSFUNCTION-
dc.subject.keywordPlusDROSOPHILA-
dc.subject.keywordPlusEVENTS-
dc.subject.keywordPlusMODEL-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0