Biopatterned Reorganization of Alkaloids Enabled by Ring-Opening Functionalization of Tertiary Amines

Cited 15 time in webofscience Cited 0 time in scopus
  • Hit : 166
  • Download : 0
Biosynthetic processes often involve reorganization of one family of natural products to another. Chemical emulation of nature’s rearrangement-based structural diversification strategy would enable the conversion of readily available natural products to other value-added secondary metabolites. However, the development of a chemical method that can be universally applied to structurally diverse natural products is nontrivial. Key to the successful reorganization of complex molecules is a versatile and mild bond-cleaving method that correctly places desired functionality, facilitating the target synthesis. Here, we report a ring-opening functionalization of a tertiary amine that can introduce desired functionalities in the context of alkaloids reorganization. The semistability of the difluoromethylated ammonium salt, accessed by the reaction of tertiary amine and in situ generated difluorocarbene, enabled the attack at the α-position by various external nucleophiles. The utility and generality of the method is highlighted by its applications in the transformation of securinega, iboga, and sarpagine alkaloids to neosecurinega, chippiine/dippinine, and vobasine-type bisindole alkaloids, respectively. During the course of these biosynthetically inspired reorganizations, we could explore chemical reactivities of biogenetically relevant precursors.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-11
Language
English
Article Type
Article
Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.143, no.47, pp.19966 - 19974

ISSN
1520-5126
DOI
10.1021/jacs.1c10205
URI
http://hdl.handle.net/10203/290018
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 15 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0