Machine learning-based constitutive model for J2- plasticity

Cited 14 time in webofscience Cited 0 time in scopus
  • Hit : 61
  • Download : 106
This research aims to propose a machine learning (ML)-based constitutive model to predict elastoplastic behavior for J2-plasticity. An artificial neural network (ANN) was constructed to replace the nonlinear stress-integration scheme conducted in the conventional theoretical constitutive model under isotropic hardening and associated flow rule. The training dataset required for the ANN Model was numerically generated based on the conventional return mapping scheme in the principal stress space. The training has been effectively carried out with one element simulation along all the possible plastic loading paths for problem independent training. A conventional theoretical method is used for the unloading procedure. Therefore, ANN is selectively utilized only for nonlinear plastic loading while keeping linear elastic loading and the unloading with a physics-based model. After one element training, the ML-based constitutive model was implemented in Abaqus User MATerial (UMAT) and its performance was verified. For this purpose, one element and tensile test simulations were applied to examine the accuracy of the ANN-based model. Also, for fully nonlinear strain-paths, a circular cup drawing simulation was applied to predict the cup profiles which was compared with that to the conventional J2 plasticity. It was concluded that the simulation results predicted from the ANN-based model show good agreement with those from the conventional J2-based constitutive model. Also, according to simulation time, the ANN-based model shows an advantage in computational efficiency.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-03
Language
English
Article Type
Article
Citation

INTERNATIONAL JOURNAL OF PLASTICITY, v.138, pp.102919

ISSN
0749-6419
DOI
10.1016/j.ijplas.2020.102919
URI
http://hdl.handle.net/10203/290013
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 14 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0