Atomic scale friction properties of confined water layers

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 193
  • Download : 488
The atomic scale friction properties of water layers are a highly important subject for understanding the lubricating mechanism of ice. Recently, two-dimensional (2D) materials gave rise to an excellent platform for investigating the tribological properties of water, since water layers can be easily intercalated between 2D layers and hydrophilic substrates. In this Review, we highlight recent research on the friction properties of the confined water between hydrophilic (mica and silica) substrates and 2D materials. Recent friction force microscopy work has revealed the nanotribological properties of water intercalated between 2D materials (e.g., graphene and MoS2), and a hydrophilic substrate increases the friction force. Moreover, the friction on both graphene and MoS2 increased as the number of stacking water layers increased. On the other hand, the magnitude of friction increase went down as the number of covering 2D layers above the intercalated water layer increased; the friction is eventually indistinguishable from the multilayer stack excluded water adsorption. The isotope effect of frictional enhancement has been addressed, and it was shown that the intercalation of deuterium oxide (D2O) leads to the decrease of friction at H2O intercalated graphene on mica due to the lower vibrational frequency of D2O adsorbate, which is associated with the low rate of frictional energy dissipation at the interface. Water exfoliated by 2D layers prepared with mechanical exfoliation and chemical vapor deposition exhibits similar frictional enhancement, indicating the universal tendency of friction by intercalated water between 2D atomic layers and hydrophilic surfaces.</p>
Publisher
A V S AMER INST PHYSICS
Issue Date
2021-12
Language
English
Article Type
Review
Citation

JOURNAL OF VACUUM SCIENCE &amp; TECHNOLOGY A, v.39, no.6

ISSN
0734-2101
DOI
10.1116/6.0001384
URI
http://hdl.handle.net/10203/289309
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0