Wafer-Scale Uniform Growth of an Atomically Thin MoS2 Film with Controlled Layer Numbers by Metal-Organic Chemical Vapor Deposition

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 200
  • Download : 0
The growth control of a molybdenum disulfide (MoS2) thin film, including the number of layers, growth rate, and electrical property modulation, remains a challenge. In this study, we synthesized MoS2 thin films using the metal–organic chemical vapor deposition (MOCVD) method with a 2 inch wafer scale and achieved high thickness uniformity according to the positions on the substrate. In addition, we successfully controlled the number of MoS2 layers to range from one to five, with a growth rate of 10 min per layer. The layer-dependent optical and electrical properties were characterized by photoluminescence, Raman spectroscopy, differential reflectance spectroscopy, and field effect transistors. To guide the growth of MoS2, we summarized the relation between the growth aspects and the precursor control in the form of a growth map. Reference to this growth map enabled control of the growth rate, domain density, and domain size according to the application purposes. Finally, we confirmed the electrical performance of MOCVD-grown MoS2 with five layers under a high-κ dielectric environment, which exhibited an on/off current ratio of 10∼6 and a maximum field effect mobility of 8.6 cm2 V–1 s–1.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-10
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.13, no.42, pp.50497 - 50504

ISSN
1944-8244
DOI
10.1021/acsami.1c12186
URI
http://hdl.handle.net/10203/289051
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0