Design of High-Gain Sub-THz Regenerative Amplifiers Based on Double-G(max) Gain Boosting Technique

Cited 11 time in webofscience Cited 0 time in scopus
  • Hit : 358
  • Download : 52
DC FieldValueLanguage
dc.contributor.authorPark, Dae-Woongko
dc.contributor.authorUtomo, Dzuhri Radityoko
dc.contributor.authorYun, Byeonghunko
dc.contributor.authorMahmood, Hafiz Usmanko
dc.contributor.authorHong, Jong-Philko
dc.contributor.authorLee, Sang-Gugko
dc.date.accessioned2021-11-09T06:42:17Z-
dc.date.available2021-11-09T06:42:17Z-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.created2021-11-09-
dc.date.issued2021-11-
dc.identifier.citationIEEE JOURNAL OF SOLID-STATE CIRCUITS, v.56, no.11, pp.3388 - 3398-
dc.identifier.issn0018-9200-
dc.identifier.urihttp://hdl.handle.net/10203/288967-
dc.description.abstractThis article reports the concept of a double maximum achievable gain (double-G(max)) core for the implementation of sub-terahertz high-gain amplifier design. The double-G(max) core is a G(max) core that adopts another linear, lossless, and reciprocal network that satisfies the G(max) condition onto an even number of cascaded transistor-level G(max) cores. It is shown that the double-G(max) core, due to its regenerative nature, can achieve much higher gain per stage than that of the same number of cascaded G(max) cores while satisfying the unconditional stability. Implemented in a 65-nm CMOS process, by adopting the proposed double-G(max) core, 247- and 272-GHz two-stage amplifiers achieve the peak gain of 18 and 15 dB, the gain per stage of 9 and 7.5 dB, and the PAE of 4.44% and 2.37%, respectively, while dissipating 21.5 mW.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleDesign of High-Gain Sub-THz Regenerative Amplifiers Based on Double-G(max) Gain Boosting Technique-
dc.typeArticle-
dc.identifier.wosid000711641100020-
dc.identifier.scopusid2-s2.0-85111074131-
dc.type.rimsART-
dc.citation.volume56-
dc.citation.issue11-
dc.citation.beginningpage3388-
dc.citation.endingpage3398-
dc.citation.publicationnameIEEE JOURNAL OF SOLID-STATE CIRCUITS-
dc.identifier.doi10.1109/JSSC.2021.3092168-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorLee, Sang-Gug-
dc.contributor.nonIdAuthorUtomo, Dzuhri Radityo-
dc.contributor.nonIdAuthorHong, Jong-Phil-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorAmplifier-
dc.subject.keywordAuthorCMOS-
dc.subject.keywordAuthordouble-G(max)-
dc.subject.keywordAuthorgain boosting-
dc.subject.keywordAuthormaximum achievable gain (G(max))-
dc.subject.keywordAuthormm-wave-
dc.subject.keywordAuthorterahertz (THz)-
dc.subject.keywordPlus65-NM CMOS-
dc.subject.keywordPlusPOWER GAIN-
dc.subject.keywordPlusTERAHERTZ SPECTROSCOPY-
dc.subject.keywordPlusGHZ AMPLIFIER-
dc.subject.keywordPlusBAND-
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 11 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0