Tuning lipid layer formation on particle surfaces by using DNA-containing recruiter molecules

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 187
  • Download : 23
Biofunctional interfaces containing DNA-conjugated molecules have been explored for various bioengineering applications. However, there is still a lack of understanding of the interaction between DNA conjugates and surrounding biomolecules. In this study, we prepare DNA-containing recruiter molecules and incorporate them onto DNA immobilized gold nanoparticles through DNA hybridization. Liposomes composed of different phospholipids are then applied to investigate supported lipid layer formation on these recruiter-containing surfaces. We find that the morphology and the amount of lipid layers formed are determined by both the liposome concentration and the type of recruiter molecule. When liposomes are applied in excess above a critical concentration, surface chemistry determines the lipid layers formed, leading to lipid multilayers on hydrophilic DNA recruiter containing surfaces and lipid monolayers on hydrophobic DNA-lipid recruiter containing surfaces. When the liposome concentration is below the critical value, the surface molecules take on a more direct role and recruit lipids through hydrophobic interaction. The total amount of the lipid layers formed is further modulated by the overall charge and the fluidity of the liposomes applied. These results provide quantitative analysis on the interaction of DNA conjugates with lipid molecules and introduce a new approach to fine-tune lipid layer formation behavior.
Publisher
ELSEVIER
Issue Date
2021-12
Language
English
Article Type
Article
Citation

COLLOIDS AND SURFACES B-BIOINTERFACES, v.208

ISSN
0927-7765
DOI
10.1016/j.colsurfb.2021.112084
URI
http://hdl.handle.net/10203/288453
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0