Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity

Cited 16 time in webofscience Cited 0 time in scopus
  • Hit : 257
  • Download : 131
The design of a catalyst with a highly active and stable oxidation state is of great interest in heterogeneous catalysis. Herein, the relationship between catalytic activity and oxidation state on Cu deposited on CeO2 nanocrystals has been elucidated by varying the shape of the ceria (CeO2) support. Three types of CeO2 nanocrystals were prepared for supporting Cu oxide (CuOx): CeO2 nanocubes (NCs), nanorods (NRs) and nanospheres (NSs). The Cu oxide deposited on CeO2NC has shown higher CO oxidation activity at a lower temperature than that over the NR and NS surfaces. Furthermore, characterization of structure and oxidation states revealed that the stable Cu1+ oxidation state on the surface of CuOx/CeO2NC formed at a low loading of copper (similar to 1.5 wt%), which acts as an active site for the CO oxidation. In contrast to the high surface area and redox properties, a systematic catalytic activity trend was observed among the catalysts with the extent of the Cu1+ oxidation state. We demonstrate that the polar (100) surface facets of NCs contribute significantly to the formation of surface hydroxyl groups, which are required for the selective and stable Cu1+ state at a low loading.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2021-09
Language
English
Article Type
Article
Citation

CATALYSIS SCIENCE & TECHNOLOGY, v.11, no.18, pp.6134 - 6142

ISSN
2044-4753
DOI
10.1039/d1cy01269j
URI
http://hdl.handle.net/10203/288033
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 16 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0