Morphing Origami Block for Lightweight Reconfigurable System

Cited 18 time in webofscience Cited 0 time in scopus
  • Hit : 168
  • Download : 497
Origami provides a unique tool for the design of robotic frames owing to its simple shaping principle by "folding." However, achieving the fast and reversible activeness of a highly reconfigurable structure remains challenging owing to the limitations of accessible actuators. In particular, it is difficult to find an actuator that can realize a simultaneously large, rapid, reversible, and stable movement while leading to a favorable form factor for the origami. To overcome this, in this article, we propose a 3-D shape-shifting system consisting of a morphing origami block that complements the stability problem of shape memory alloy wire actuators by tuning its structural characteristics. This cooperative scheme improves the reversibility and stability of the shape-shifting system, which enables the rapid transformation with high degrees of freedom unlike in existing programmable origami. As a stand-alone unit of transformation, morphing block equipped with deployable mechanism and actuators weighs 6 g and has a volume change factor of ten. Furthermore, the transformation time in both directions is less than 5 s, and the block can carry more than 120 g of payload in the deployed state. The proposed system composed of multiple origami blocks can reconfigure itself into diverse 3-D target shapes.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2021-04
Language
English
Article Type
Article
Citation

IEEE TRANSACTIONS ON ROBOTICS, v.37, no.2, pp.494 - 505

ISSN
1552-3098
DOI
10.1109/TRO.2020.3031248
URI
http://hdl.handle.net/10203/287976
Appears in Collection
AE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 18 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0