Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries

Cited 86 time in webofscience Cited 0 time in scopus
  • Hit : 928
  • Download : 0
Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings. Uninterrupted monitoring of pressure and temperature at skin interfaces can help to minimize the potential for pressure injuries in hospitalized or bedridden patients. Here, the authors introduce a soft, skin-mountable sensor that can continuously provide readings via antennas mounted under bedding, and demonstrate the functionality and robustness of the devices on patients.
Publisher
NATURE PORTFOLIO
Issue Date
2021-08
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-25324-w
URI
http://hdl.handle.net/10203/287765
Appears in Collection
EE-Journal Papers(저널논문)MS-Journal Papers(저널논문)ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 86 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0