Experimental and Computational Studies on the Ruthenium-Catalyzed Dehydrative C-H Coupling of Phenols with Aldehydes for the Synthesis of 2-Alkylphenol, Benzofuran, and Xanthene Derivatives

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 181
  • Download : 0
The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) was found to be an effective catalyst for the dehydrative C-H coupling reaction of phenols and aldehydes to form 2-alkylphenol products. The coupling reaction of phenols with branched aldehydes selectively formed 1,1-disubstituted benzofurans, while the coupling reaction with salicylaldehydes yielded xanthene derivatives. A normal deuterium isotope effect was observed from the coupling reaction of 3-methoxyphenol with benzaldehyde and 2-propanol/2-propanol-d(8) (k(H)/k(D) = 2.3 +/- 0.3). The carbon isotope effect was observed on the benzylic carbon of the alkylation product from the coupling reaction of 3-methoxyphenol with 4-methoxybenzaldehyde (C(3) 1.021(3)) and on both benzylic and ortho-arene carbons from the coupling reaction with 4-trifluorobenzaldehdye (C(2) 1.017(3), C(3) 1.011(2)). The Hammett plot from the coupling reaction of 3-methoxyphenol with para-substituted benzaldehydes p-X-C6H4CHO (X = OMe, Me, H, F, Cl, CF3) displayed a V-shaped linear slope. Catalytically relevant Ru-H complexes were observed by NMR from a stoichiometric reaction mixture of 1, 3-methoxyphenol, benzaldehyde, and 2-propanol in CD2Cl2. The DFT calculations provided a detailed catalysis mechanism featuring an electrophilic aromatic substitution of the aldehyde followed by the hydrogenolysis of the hydroxy group. The calculations also revealed a mechanistic rationale for the strong electronic effect of the benzaldehdye substrates p-X-C6H4CHO (X = OMe, CF3) in controlling the turnover-limiting step. The catalytic C-H coupling method provides an efficient synthetic protocol for 2-alkylphenols, 1,1-disubstituted benzofurans, and xanthene derivatives without employing any reactive reagents or forming wasteful byproducts.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-08
Language
English
Article Type
Article
Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.143, no.33, pp.13428 - 13440

ISSN
0002-7863
DOI
10.1021/jacs.1c06887
URI
http://hdl.handle.net/10203/287762
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0