Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO2 reduction

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 286
  • Download : 0
Electrochemical CO2 reduction reaction (eCO(2)RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high surface activities is critical for effective eCO(2)RR. In this study, we introduced a surface overgrowth method on stable Au icosahedrons to generate Au nanostars with large bumps. As a catalyst for eCO(2)RR, the Au nanostars exhibited a maximum faradaic efficiency (FE) of 98% and a mass activity of 138.9 A g(-1) for CO production, where the latter was one of the highest activities among Au catalysts. Despite the deducted electrochemically active surface area per mass, the high-energy surfaces from overgrowth provided a 3.8-fold larger specific activity than the original Au icosahedral seeds, resulting in superior eCO(2)RR performances that outweigh the trade-off of size and shape in nanoparticles. The Au nanostars also represented prolonged stability due to the durability of high-energy facets. The characterization of surface morphology and density functional theory calculations revealed that predominant Au(321) facets on the Au nanostars effectively stabilized *COOH adsorbates, thus lowering the overpotential and improving the FE for CO production. This overgrowth method is simple and universal for various materials, which would be able to extend into a wide range of electrochemical catalysts.
Publisher
ROYAL SOC CHEMISTRY
Issue Date
2021-09
Language
English
Article Type
Article
Citation

NANOSCALE, v.13, no.34, pp.14346 - 14353

ISSN
2040-3364
DOI
10.1039/d1nr03928h
URI
http://hdl.handle.net/10203/287703
Appears in Collection
CBE-Journal Papers(저널논문)CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0