Atomic-scale unveiling of multiphase evolution during hydrated Zn-ion insertion in vanadium oxide

Cited 19 time in webofscience Cited 0 time in scopus
  • Hit : 242
  • Download : 0
An initial crystalline phase can transform into another phases as cations are electrochemically inserted into its lattice. Precise identification of phase evolution at an atomic level during transformation is thus the very first step to comprehensively understand the cation insertion behavior and subsequently achieve much higher storage capacity in rechargeable cells, although it is sometimes challenging. By intensively using atomic-column-resolved scanning transmission electron microscopy, we directly visualize the simultaneous intercalation of both H2O and Zn during discharge of Zn ions into a V2O5 cathode with an aqueous electrolyte. In particular, when further Zn insertion proceeds, multiple intermediate phases, which are not identified by a macroscopic powder diffraction method, are clearly imaged at an atomic scale, showing structurally topotactic correlation between the phases. The findings in this work suggest that smooth multiphase evolution with a low transition barrier is significantly related to the high capacity of oxide cathodes for aqueous rechargeable cells, where the crystal structure of cathode materials after discharge differs from the initial crystalline state in general. The detailed understanding of the structural variations during cycling in cathodes for Zn-ion aqueous rechargeable batteries is still limited. Here, the authors utilize atomic-column-resolved scanning transmission electron microscopy to elucidate multiphase evolution during hydrated Zn-Ion insertion in vanadium oxide.
Publisher
NATURE PORTFOLIO
Issue Date
2021-07
Language
English
Article Type
Article
Citation

NATURE COMMUNICATIONS, v.12, no.1

ISSN
2041-1723
DOI
10.1038/s41467-021-24700-w
URI
http://hdl.handle.net/10203/287425
Appears in Collection
MS-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 19 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0