Optimal flickering light stimulation for entraining gamma waves in the human brain

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 172
  • Download : 16
Although light flickering at 40 Hz reduced Alzheimer's disease (AD) pathologies in mice by entraining gamma waves, it failed to reduce cerebral amyloid burden in a study on six patients with AD or mild cognitive impairment. We investigated the optimal color, intensity, and frequency of the flickering light stimulus for entraining gamma waves in young adults. We compared the event-related synchronization (ERS) values of entrained gamma waves between four different light colors (white, red, green, and blue) in the first experiment and four different luminance intensities in the second experiment. In both experiments, we compared the ERS values of entrained gamma waves between 10 different flickering frequencies from 32 to 50 Hz. We also examined the severity of six adverse effects in both experiments. We compared the propagation of gamma waves in the visual cortex to other brain regions between different luminance intensities and flickering frequencies. We found that red light entrained gamma waves most effectively, followed by white light. Lights of higher luminance intensities (700 and 400 cd/m(2)) entrained stronger gamma waves than those of lower luminance intensities (100 and 10 cd/m(2)). Lights flickering at 34-38 Hz entrained stronger and more widely spread beyond the visual cortex than those flickering at 40-50 Hz. Light of 700 cd/m(2) resulted in more moderate-to-severe adverse effects than those of other luminance intensities. In humans, 400 cd/m(2) white light flickering at 34-38 Hz was most optimal for gamma entrainment.
Publisher
NATURE PORTFOLIO
Issue Date
2021-08
Language
English
Article Type
Article
Citation

SCIENTIFIC REPORTS, v.11, no.1

ISSN
2045-2322
DOI
10.1038/s41598-021-95550-1
URI
http://hdl.handle.net/10203/287408
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
121338.pdf(3.27 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0