Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries

Cited 149 time in webofscience Cited 0 time in scopus
  • Hit : 951
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorPark, Sewonko
dc.contributor.authorJeong, Seo Yeongko
dc.contributor.authorLee, Tae Kyungko
dc.contributor.authorPark, Min Wooko
dc.contributor.authorLim, Hyeong Yongko
dc.contributor.authorSung, Jaekyungko
dc.contributor.authorCho, Jaephilko
dc.contributor.authorKwak, Sang Kyuko
dc.contributor.authorHong, Sung Youko
dc.contributor.authorChoi, Nam-Soonko
dc.date.accessioned2021-08-20T06:30:09Z-
dc.date.available2021-08-20T06:30:09Z-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.created2021-08-20-
dc.date.issued2021-02-
dc.identifier.citationNATURE COMMUNICATIONS, v.12, no.1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/287261-
dc.description.abstractSolid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1C and fast charging capability (1.9% capacity fading after 100 cycles at 3C). Interface architecture generated from electrolyte additives is a key element for high performance lithium-ion batteries. Here, the authors present that a stable and spatially deformable solid electrolyte interphase mitigates interfacial degradation of Si-embedded anodes and Ni-rich cathodes.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleReplacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries-
dc.typeArticle-
dc.identifier.wosid000617500200011-
dc.identifier.scopusid2-s2.0-85100599144-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue1-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-021-21106-6-
dc.contributor.localauthorChoi, Nam-Soon-
dc.contributor.nonIdAuthorPark, Sewon-
dc.contributor.nonIdAuthorJeong, Seo Yeong-
dc.contributor.nonIdAuthorLee, Tae Kyung-
dc.contributor.nonIdAuthorPark, Min Woo-
dc.contributor.nonIdAuthorLim, Hyeong Yong-
dc.contributor.nonIdAuthorSung, Jaekyung-
dc.contributor.nonIdAuthorCho, Jaephil-
dc.contributor.nonIdAuthorKwak, Sang Kyu-
dc.contributor.nonIdAuthorHong, Sung You-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 149 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0