Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 54
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorKim, Ji-Yongko
dc.contributor.authorHong, Deokgiko
dc.contributor.authorLee, Jae-Chanko
dc.contributor.authorKim, Hyoung Gyunko
dc.contributor.authorLee, Sungwooko
dc.contributor.authorShin, Sangyongko
dc.contributor.authorKim, Beomilko
dc.contributor.authorLee, Hyunjooko
dc.contributor.authorKim, Miyoungko
dc.contributor.authorOh, Jihunko
dc.contributor.authorLee, Gun-Doko
dc.contributor.authorNam, Dae-Hyunko
dc.contributor.authorJoo, Young-Changko
dc.date.accessioned2021-07-13T05:30:19Z-
dc.date.available2021-07-13T05:30:19Z-
dc.date.created2021-07-13-
dc.date.created2021-07-13-
dc.date.created2021-07-13-
dc.date.issued2021-06-
dc.identifier.citationNATURE COMMUNICATIONS, v.12, no.1, pp.3765-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10203/286563-
dc.description.abstractFor steady electroconversion to value-added chemical products with high efficiency, electrocatalyst reconstruction during electrochemical reactions is a critical issue in catalyst design strategies. Here, we report a reconstruction-immunized catalyst system in which Cu nanoparticles are protected by a quasi-graphitic C shell. This C shell epitaxially grew on Cu with quasi-graphitic bonding via a gas-solid reaction governed by the CO (g) - CO2 (g) - C (s) equilibrium. The quasi-graphitic C shell-coated Cu was stable during the CO2 reduction reaction and provided a platform for rational material design. C2+ product selectivity could be additionally improved by doping p-block elements. These elements modulated the electronic structure of the Cu surface and its binding properties, which can affect the intermediate binding and CO dimerization barrier. B-modified Cu attained a 68.1% Faradaic efficiency for C2H4 at -0.55V (vs RHE) and a C2H4 cathodic power conversion efficiency of 44.0%. In the case of N-modified Cu, an improved C2+ selectivity of 82.3% at a partial current density of 329.2mA/cm(2) was acquired. Quasi-graphitic C shells, which enable surface stabilization and inner element doping, can realize stable CO2-to-C2H4 conversion over 180h and allow practical application of electrocatalysts for renewable energy conversion. Surface reconstruction of electrocatalysts is an important issue for electroconversion of carbon dioxide to value-added chemical products. Here the authors address this issue by using copper nanoparticles protected by self-formed quasi graphitic carbon shell for stable CO2 to C2H4 conversion.-
dc.languageEnglish-
dc.publisherNATURE RESEARCH-
dc.titleQuasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products-
dc.typeArticle-
dc.identifier.wosid000667248200001-
dc.identifier.scopusid2-s2.0-85108824204-
dc.type.rimsART-
dc.citation.volume12-
dc.citation.issue1-
dc.citation.beginningpage3765-
dc.citation.publicationnameNATURE COMMUNICATIONS-
dc.identifier.doi10.1038/s41467-021-24105-9-
dc.contributor.localauthorLee, Hyunjoo-
dc.contributor.localauthorOh, Jihun-
dc.contributor.nonIdAuthorKim, Ji-Yong-
dc.contributor.nonIdAuthorHong, Deokgi-
dc.contributor.nonIdAuthorLee, Jae-Chan-
dc.contributor.nonIdAuthorKim, Hyoung Gyun-
dc.contributor.nonIdAuthorLee, Sungwoo-
dc.contributor.nonIdAuthorKim, Miyoung-
dc.contributor.nonIdAuthorLee, Gun-Do-
dc.contributor.nonIdAuthorNam, Dae-Hyun-
dc.contributor.nonIdAuthorJoo, Young-Chang-
dc.description.isOpenAccessY-
dc.type.journalArticleArticle-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusCOVERAGE-
dc.subject.keywordPlusETHYLENE-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0