Switching of heating and cooling modes using thermal radiation films

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 127
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorCho, Jin-Wooko
dc.contributor.authorChang, Soo-Kyungko
dc.contributor.authorPark, Sung-Junko
dc.contributor.authorOh, Seungtaeko
dc.contributor.authorNam, Youngsukko
dc.contributor.authorKim, Sun-Kyungko
dc.date.accessioned2021-06-25T05:10:06Z-
dc.date.available2021-06-25T05:10:06Z-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.issued2020-09-
dc.identifier.citationCURRENT APPLIED PHYSICS, v.20, no.9, pp.1073 - 1079-
dc.identifier.issn1567-1739-
dc.identifier.urihttp://hdl.handle.net/10203/286233-
dc.description.abstractWe study emissivity (epsilon)-dependent radiative heat transfer phenomena in remote and contact configurations. To demonstrate the emissivity-dependent radiative heating mode in a remote configuration, we fabricated miniature greenhouses covered with low (0.34)and high-epsilon (0.86) polyethylene films and monitored temperatures on the floors, insides, and covers of the greenhouses during 24 h. The high-epsilon greenhouse yielded a 9 degrees C increase in floor temperature relative to the low-epsilon greenhouse at a one-sun solar irradiance because the high-epsilon film effectively trapped floor radiation. In contrast, the cover temperature remained lower in the high-epsilon greenhouse due to intensified radiation released from the high-epsilon film. This self-cooling effect was more evident when an emissive film was in physical contact with an object. While bare copper heated up to 55 degrees C, a high-epsilon film coated copper substrate was kept cooler by 4 and 2 degrees C compared with the bare and low-epsilon film coated copper samples, respectively.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titleSwitching of heating and cooling modes using thermal radiation films-
dc.typeArticle-
dc.identifier.wosid000565890700012-
dc.identifier.scopusid2-s2.0-85088924627-
dc.type.rimsART-
dc.citation.volume20-
dc.citation.issue9-
dc.citation.beginningpage1073-
dc.citation.endingpage1079-
dc.citation.publicationnameCURRENT APPLIED PHYSICS-
dc.identifier.doi10.1016/j.cap.2020.07.008-
dc.contributor.localauthorNam, Youngsuk-
dc.contributor.nonIdAuthorCho, Jin-Woo-
dc.contributor.nonIdAuthorChang, Soo-Kyung-
dc.contributor.nonIdAuthorPark, Sung-Jun-
dc.contributor.nonIdAuthorOh, Seungtae-
dc.contributor.nonIdAuthorKim, Sun-Kyung-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMid-infrared photonics-
dc.subject.keywordAuthorRadiative heat transfer-
dc.subject.keywordAuthorSpectrum engineering-
dc.subject.keywordAuthorThermal radiation films-
dc.subject.keywordPlusCOMPREHENSIVE PHOTONIC APPROACH-
dc.subject.keywordPlusCOATINGS-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0