Multi-artery heat-pipe spreader: Lateral liquid supply

Cited 65 time in webofscience Cited 0 time in scopus
  • Hit : 100
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorHwang, G. S.ko
dc.contributor.authorFleming, E.ko
dc.contributor.authorCarne, B.ko
dc.contributor.authorSharratt, S.ko
dc.contributor.authorNam, Youngsukko
dc.contributor.authorDussinger, P.ko
dc.contributor.authorJu, Y. S.ko
dc.contributor.authorKaviany, M.ko
dc.date.accessioned2021-06-25T02:10:54Z-
dc.date.available2021-06-25T02:10:54Z-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.created2021-06-25-
dc.date.issued2011-05-
dc.identifier.citationINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, v.54, no.11-12, pp.2334 - 2340-
dc.identifier.issn0017-9310-
dc.identifier.urihttp://hdl.handle.net/10203/286189-
dc.description.abstractWe design and test a low thermal/hydraulic resistance, multi-artery heat-pipe spreader vapor chamber. Liquid (water) is supplied to a highly concentrated heat-source region through a monolayer evaporator wick and a set of lateral converging arteries, fabricated from sintered, spherical copper particles. The monolayer wick allows for a minimum evaporator resistance of 0.055 K/(W/cm(2)), which is related to a critical transition where the receding meniscus approaches the particle neck. Similar behavior is also observed in a monolayer-wick evaporator, partially submerged in liquid bath. After this minimum, local dryout occurs and increases the resistance. However, a continuous liquid supply through the lateral arteries does not allow for total dryout in the test limit of 580 W/cm(2). These thermal/hydraulic behaviors are predicted using the local thermal equilibrium and nonequilibrium models. (C) 2011 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleMulti-artery heat-pipe spreader: Lateral liquid supply-
dc.typeArticle-
dc.identifier.wosid000289820100012-
dc.identifier.scopusid2-s2.0-79953031016-
dc.type.rimsART-
dc.citation.volume54-
dc.citation.issue11-12-
dc.citation.beginningpage2334-
dc.citation.endingpage2340-
dc.citation.publicationnameINTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER-
dc.identifier.doi10.1016/j.ijheatmasstransfer.2011.02.029-
dc.contributor.localauthorNam, Youngsuk-
dc.contributor.nonIdAuthorHwang, G. S.-
dc.contributor.nonIdAuthorFleming, E.-
dc.contributor.nonIdAuthorCarne, B.-
dc.contributor.nonIdAuthorSharratt, S.-
dc.contributor.nonIdAuthorDussinger, P.-
dc.contributor.nonIdAuthorJu, Y. S.-
dc.contributor.nonIdAuthorKaviany, M.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorMulti-artery-
dc.subject.keywordAuthorEvaporator-
dc.subject.keywordAuthorHeat pipe-
dc.subject.keywordAuthorHeat spreader-
dc.subject.keywordAuthorMeniscus recess-
dc.subject.keywordAuthorCapillary-
dc.subject.keywordAuthorWick-
dc.subject.keywordAuthorVapor chamber-
dc.subject.keywordAuthorConverging wick-
dc.subject.keywordPlusRESISTANCE MEASUREMENT-
dc.subject.keywordPlusVISUALIZATION-
dc.subject.keywordPlusEVAPORATOR-
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 65 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0