CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 77
  • Download : 0
This study addresses computational fluid dynamics (CFD) for designing internally heat-integrated pressure-swing distillation (HIPSD) with improved energy efficiency in azeotropic distillation. An extended concept of pinch pressure is applied to determine the operating pressure of the HIPSD in a double annular column configuration for the circumvention of a distillation boundary and adequate heat transfer. For the separation of a highly azeotropic ternary mixture of butyl acetate, butanol, and water, the combination of a single unit of HIPSD and a decanter is employed. This azeotropic mixture is separated in different design alternatives for the given initial feed compositions. In each sequence, the heat transfer rate inside the HIPSD was calculated by the CFD method, and the total utility consumption accordingly decreased by 9.72% and 15.44%. The reboiler and condenser duty in the HIPSD were reduced by up to 48.65%. The separation efficiency in the condenser of the high-pressure column was improved enough to reach a zero reflux by the internal heat integration.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2021-08
Language
English
Article Type
Article
Citation

APPLIED THERMAL ENGINEERING, v.195, pp.117198

ISSN
1359-4311
DOI
10.1016/j.applthermaleng.2021.117198
URI
http://hdl.handle.net/10203/286150
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0