An Optimized Methodology for a Hybrid Photo-Voltaic and Energy Storage System Connected to a Low-Voltage Grid

Cited 27 time in webofscience Cited 0 time in scopus
  • Hit : 129
  • Download : 0
<jats:p>The growing human population and the increasing energy needs have produced a serious energy crisis, which has stimulated researchers to look for alternative energy sources. The diffusion of small-scale renewable distributed generations (DG) with micro-grids can be a promising solution to meet the environmental obligations. The uncertainty and sporadic nature of renewable energy sources (RES) is the main obstacle to their use as autonomous energy sources. In order to overcome this, a storage system is required. This paper proposes an optimized strategy for a hybrid photovoltaic (PV) and battery storage system (BSS) connected to a low-voltage grid. In this study, a cost function is formulated to minimize the net cost of electricity purchased from the grid. The charging and discharging of the battery are operated optimally to minimize the defined cost function. Half-hourly electricity consumer load data and solar irradiance data collected from the United Kingdom (UK) for a whole year are utilized in the proposed methodology. Five cases are discussed for a comparative cost analysis of the electricity imported and exported. The proposed scheme provides a techno-economic analysis of the combination of a BSS with a low-voltage grid, benefitting from the feed-in tariff (FIT) scheme.</jats:p>
Publisher
MDPI AG
Issue Date
2019-02
Language
English
Article Type
Article
Citation

ELECTRONICS, v.8, no.2, pp.176

ISSN
2079-9292
DOI
10.3390/electronics8020176
URI
http://hdl.handle.net/10203/285870
Appears in Collection
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0