Development of an ESR/NMR Double-Magnetic-Resonance System for Use at Ultra-low Temperatures and in High Magnetic Fields and Its Use for Measurements of a Si Wafer Lightly Doped with P-31

Cited 1 time in webofscience Cited 0 time in scopus
  • Hit : 270
  • Download : 0
Dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR) and electron-nuclear double resonance (ENDOR) provide useful information about the magnetic properties of dilute spin systems. One such system is a Si wafer lightly doped with P-31 (Si:P) which is a candidate for quantum-computing devices. The "Si:P" model was proposed by Kane in 1998. To date, however, the details of the nuclear magnetism of P-31, which is important information for the use of these nuclei as quantum bits for computing, are still unknown. The reason is because the spins are diluted, and there has been no report about P-31 in Si from direct NMR detection. It is thus necessary to overcome the dilution to show the usefulness of Si:P. The DNP-NMR method provides a way to improve the NMR sensitivity to P-31 by controlling the relative magnetization with the Overhauser effect. We have developed magnetic-resonance equipment for ultra-low temperatures and high magnetic fields with the goal of using DNP to detect P-31 directly in NMR measurements. We have carried out P-31-DNP-NMR at 139.03 MHz, 220 mK using this system. We have successfully detected by one-shot measurement the spin-echo NMR signal of approximately 1.9 x 10(14) fully polarized P-31 nuclear spins which is estimated from the size and the concentration of the sample. In this report, we describe a new electron spin resonance (ESR)/NMR double-magnetic-resonance system constructed in a He-3-He-4 dilution refrigerator, and demonstrate its use to obtain ENDOR and DNP-NMR measurements of P-31 in a Si wafer.
Publisher
SPRINGER WIEN
Issue Date
2021-04
Language
English
Article Type
Article
Citation

APPLIED MAGNETIC RESONANCE, v.52, no.4, pp.305 - 315

ISSN
0937-9347
DOI
10.1007/s00723-021-01309-2
URI
http://hdl.handle.net/10203/285238
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0