Millimeter-Wave Band Resonator with Surface Coil for DNP-NMR Measurements

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 257
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorIshikawa, Yuyako
dc.contributor.authorKoizumi, Yutako
dc.contributor.authorFujii, Yutakako
dc.contributor.authorOida, Tomokiko
dc.contributor.authorFukuda, Akirako
dc.contributor.authorLee, Soonchilko
dc.contributor.authorKobayashi, Eiichiko
dc.contributor.authorKikuchi, Hikomitsuko
dc.contributor.authorJarvinen, Jarnoko
dc.contributor.authorVasiliev, Sergeyko
dc.contributor.authorMitsudo, Seitaroko
dc.date.accessioned2021-05-17T02:10:13Z-
dc.date.available2021-05-17T02:10:13Z-
dc.date.created2021-05-04-
dc.date.issued2021-04-
dc.identifier.citationAPPLIED MAGNETIC RESONANCE, v.52, no.4, pp.317 - 335-
dc.identifier.issn0937-9347-
dc.identifier.urihttp://hdl.handle.net/10203/285235-
dc.description.abstractIn this study, we developed a surface coil with a meanderline shape for nuclear magnetic resonance (NMR) combined with a Fabry-Perot resonator (FPR) for millimeter-wave band electron-spin resonance (ESR). Our goal was to perform both NMR and ESR measurements with high sensitivity, in particular for thin samples, such as a silicon wafer. We measured NMR signals using a variety of meanderline coil shapes and determined the optimal turn number of the meanderline as well as the clearance length between the lines. The FPR consisted of spherical and flat mirrors, where the latter was constructed of a thin gold layer with the meanderline underneath. We observed that the meanderline provided high sensitivity when the gold layer was sufficiently thin at approximately 16 nm. We also measured millimeter-wave ESR from a thin sample of phosphorous-doped silicon with the developed FPR with the meanderline.-
dc.languageEnglish-
dc.publisherSPRINGER WIEN-
dc.titleMillimeter-Wave Band Resonator with Surface Coil for DNP-NMR Measurements-
dc.typeArticle-
dc.identifier.wosid000638870800001-
dc.identifier.scopusid2-s2.0-85104130791-
dc.type.rimsART-
dc.citation.volume52-
dc.citation.issue4-
dc.citation.beginningpage317-
dc.citation.endingpage335-
dc.citation.publicationnameAPPLIED MAGNETIC RESONANCE-
dc.identifier.doi10.1007/s00723-021-01328-z-
dc.contributor.localauthorLee, Soonchil-
dc.contributor.nonIdAuthorIshikawa, Yuya-
dc.contributor.nonIdAuthorKoizumi, Yuta-
dc.contributor.nonIdAuthorFujii, Yutaka-
dc.contributor.nonIdAuthorOida, Tomoki-
dc.contributor.nonIdAuthorFukuda, Akira-
dc.contributor.nonIdAuthorKobayashi, Eiichi-
dc.contributor.nonIdAuthorKikuchi, Hikomitsu-
dc.contributor.nonIdAuthorJarvinen, Jarno-
dc.contributor.nonIdAuthorVasiliev, Sergey-
dc.contributor.nonIdAuthorMitsudo, Seitaro-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
Appears in Collection
PH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0