Load Resistance Optimization of a Magnetically Coupled Two-Degree-of-Freedom Bistable Energy Harvester Considering Third-Harmonic Distortion in Forced Oscillation

Cited 4 time in webofscience Cited 0 time in scopus
  • Hit : 235
  • Download : 0
In this study, the external load resistance of a magnetically coupled two-degree-of-freedom bistable energy harvester (2-DOF MCBEH) was optimized to maximize the harvested power output, considering the third-harmonic distortion in forced response. First, the nonlinear dynamic analysis was performed to investigate the characteristics of the large-amplitude interwell motions of the 2-DOF MCBEH. From the analysis results, it was found that the third-harmonic distortion occurs in the interwell motion of the 2-DOF MCBEH system due to the nonlinear magnetic coupling between the beams. Thus, in this study, the third-harmonic distortion was considered in the optimization process of the external load resistance of the 2-DOF MCBEH, which is different from the process of conventional impedance matching techniques suitable for linear systems. The optimal load resistances were estimated for harmonic and swept-sine excitations by using the proposed method, and all the results of the power outputs were in excellent agreements with the numerically optimized results. Furthermore, the associated power outputs were compared with the power outputs obtained by using the conventional impedance matching technique. The results of the power outputs are discussed in terms of the improvement in energy harvesting performance.
Publisher
MDPI
Issue Date
2021-04
Language
English
Article Type
Article
Citation

SENSORS, v.21, no.8

ISSN
1424-8220
DOI
10.3390/s21082668
URI
http://hdl.handle.net/10203/283655
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 4 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0