Theoretical and experimental investigations of asymmetric light transport in graded index photonic crystal waveguides

Cited 22 time in webofscience Cited 0 time in scopus
  • Hit : 95
  • Download : 0
To provide asymmetric propagation of light, we propose a graded index photonic crystal (GRIN PC) based waveguide configuration that is formed by introducing line and point defects as well as intentional perturbations inside the structure. The designed system utilizes isotropic materials and is purely reciprocal, linear, and time-independent, since neither magneto-optical materials are used nor time-reversal symmetry is broken. The numerical results show that the proposed scheme based on the spatial-inversion symmetry breaking has different forward (with a peak value of 49.8%) and backward transmissions (4.11% at most) as well as relatively small round-trip transmission (at most 7.11%) in a large operational bandwidth of 52.6 nm. The signal contrast ratio of the designed configuration is above 0.80 in the telecom wavelengths of 1523.5-1576.1 nm. An experimental measurement is also conducted in the microwave regime: A strong asymmetric propagation characteristic is observed within the frequency interval of 12.8 GHz-13.3 GHz. The numerical and experimental results confirm the asymmetric transmission behavior of the proposed GRIN PC waveguide. (C) 2014 AIP Publishing LLC.
Publisher
AMER INST PHYSICS
Issue Date
2014-01
Language
English
Article Type
Article
Citation

APPLIED PHYSICS LETTERS, v.104, no.3

ISSN
0003-6951
DOI
10.1063/1.4861926
URI
http://hdl.handle.net/10203/282636
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 22 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0