Analysis of the focusing crosstalk effects of broadband all-dielectric planar metasurface microlens arrays for ultra-compact optical device applications

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 193
  • Download : 0
Microlens arrays have been widely used for different optoelectronic applications. The demand for compact optical devices necessitates the deployment of even smaller microlens arrays; however, as the spacing between individual lenses reduces and the lens diameter approaches the length scale of the incident wavelength of light, diffraction starts playing a critical role and produces a significant impact on the final focusing properties of the optical field. In this paper, we analyze the focusing characteristics of all-dielectric ultra-compact metasurface lens arrays for efficient optical device applications, constructed by kinds of broadband planar lenses composed of subwavelength nano-scatterers. By using the 3D finite-difference time-domain (FDTD) method, focusing and diffraction-based crosstalk effects caused by the changing physical spacing between adjacent metalenses, the diameter of microlenses, the operating wavelength, and the army size are rigorously investigated. Analysis of the achieved results show that a larger spacing, a larger lens size, and a shorter wavelength can lead to a weaker focusing crosstalk effect. Moreover, the crosstalk effect does not have a significant dependence on the array's overall size. This research study may provide an important technological reference to designing an array of all-dielectric planar metasurface lenses with a well-controlled focusing performance and may pave the way further toward the application of metasurface lens arrays in compact optical sensing, coupling, and detecting system designs. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Publisher
OPTICAL SOC AMER
Issue Date
2018-10
Language
English
Article Type
Article
Citation

OSA CONTINUUM, v.1, no.2, pp.506 - 520

ISSN
2578-7519
DOI
10.1364/OSAC.1.000506
URI
http://hdl.handle.net/10203/282618
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0