Photonic crystals based on aperiodic dielectric multilayers for optical filtering

Cited 5 time in webofscience Cited 0 time in scopus
  • Hit : 60
  • Download : 0
In this study, we demonstrate two different methods to generate one-dimensional photonic crystals (PCs) based on aperiodic dielectric gratings and investigate their optical filtering characteristics. The first grating design approach relies on a function formed by the summation of two cosine functions that exhibit different spatial frequencies corresponding to predefined reciprocal lattice vectors (RLVs) and hence generating a grating function by placing the refractive index layer boundaries at the zero-crossing locations of this function. The second design approach starts with the discretization of the total grating thickness with layers of equal thicknesses and each layer's refractive index is selected to maximize the magnitude of the Fourier transform of the grating function at the spatial frequency locations corresponding to predefined RLVs. The non-periodic dielectric multilayers are exposed to time domain calculations utilizing finite-difference time domain method. Using numerical calculations, transmission properties of the designs are investigated and the free adjustability of the photonic bandgap locations in the spectra is demonstrated for both methods. With these advantages, both methods prove to be practical solutions for the design of optical filters based on one-dimensional PCs utilizing aperiodic index modulation.
Publisher
IOP PUBLISHING LTD
Issue Date
2019-04
Language
English
Article Type
Article
Citation

JOURNAL OF OPTICS, v.21, no.4

ISSN
2040-8978
DOI
10.1088/2040-8986/ab06d1
URI
http://hdl.handle.net/10203/282567
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 5 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0