Molecular Orientation Control of Liquid Crystal Organic Semiconductor for High-Performance Organic Field-Effect Transistors

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 216
  • Download : 0
The control of molecular orientation and ordering of liquid crystal (LC) organic semiconductor (OSC) for high-performance and thermally stable organic thin-film transistors is investigated. A liquid crystalline molecule, 2-(4-dodecyl thiophenyl) [1]dibenzothiopheno[6,5-b:6',5'-f]-thieno[3,2-b]thiophene (C12-Th-DBTTT) is synthesized, showing the highly ordered smectic X (SmX) phase, demonstrating molecular reorganization via thermal annealing. The resulting thermally evaporated polycrystalline film and solution-sheared thin film show high charge carrier mobilities of 9.08 and 27.34 cm(2) V-1 s(-1), respectively. Atomic force microscopy and grazing-incidence X-ray diffraction analyses prove that the random SmA(1)-like structure (smectic monolayer) is reorganized to the highly ordered SmA(2)-like structure (smectic bilayer) of C12-Ph-DBTTT at the crystal-SmX transition temperature region. Because of the strong intermolecular interactions between rigid DBTTT cores, the thin film devices of C12-Th-DBTTT show excellent thermal stability up to 300 degrees C, indicating that LC characterization of conventional OSC materials can obtain high electrical performance as well as superior thermal durability.
Publisher
AMER CHEMICAL SOC
Issue Date
2021-03
Language
English
Article Type
Article
Citation

ACS APPLIED MATERIALS & INTERFACES, v.13, no.9, pp.11125 - 11133

ISSN
1944-8244
DOI
10.1021/acsami.0c22393
URI
http://hdl.handle.net/10203/282376
Appears in Collection
CH-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0